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Abstract. The purpose of this paper is to introduce a new class of
strong semilatticess of monoids, the so called q -partial monoids. We show
that every strong semilatticess of monoids S with identity contains a unique
maximal q-strong semilattices of monoids Q(S) such that (Q(S))1 = S1.
Finally we show this Q-operation commute with cartesian products.
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1. Introduction

One can easily observe that Clifford semigroups have been the object of extensive
study from both category and semigroup theorists. A Clifford semigroup is usually
defined as a regular semigroup with central idempotents (see [1, 2, 4, 7]). Whence
many characterizations exist including the structure theorem that characterizes them
as semilattices of groups, or equivalently as strong semilattices of groups. That is
if S = [Y, Sα, ψα,β ] is a strong semilattice Y of groups Sα, then S is a Clifford
semigroup with operation defined by

(1) ab = (ψα,αβa)(ψβ,αβb).

for a ∈ Sα, b ∈ Sβ .
Conversely, a Clifford semigroup S is a strong semilattice E(S) of groups Sf ;

S = [E(S), Sf , ψf,g] where E(S) is the semilattice (f ≤ g ⇔ fg = f) of idempotents
in S, Sf is the maximal subgroup of S with identity f, and ψf,g is the homomorphism
Sf → Sg , a 7→ ag if f ≥ g. Here we observe that S may be viewed as a category
with objects all Sf , f ∈ E(S) (are objects in the category of groups) and arrows, also
called morphisms, given for two objects Sf and Sg as follows: Hom(Sf , Sg) = {ψf,g}
if f ≥ g and Hom(Sf , Sg) = ∅ otherwise. In the main section A q Strong semilattices
of monoids is defined to be a strong semilattices of monoids S = [E (S) , Se, ψe,f ]
such that S has an identity 1 and ϕ1,e is an epimorphism for all e ∈ E(S). Every
Strong semilatticess of monoids S with identity contains a unique maximal q-strong
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semilatticess of monoids Q(S)such that (Q(S))1 = S1. This Q-operation is proved
to commute with cartesian products.

2. Strong semilattices of monoids

A lower semilattice is a partially ordered set < X,≤> for which a∧b (the greatest
lower bound of a and b) exists for all a, b ∈ X. If the greatest lower bound of every
non-empty subset of X exists, then < X,≤>, or simply X is called a complete lower
semilattice. A complete upper semilattice is defined dually. A (complete) lower and
upper semilattice < L,≤,∧,∨ >= L is called a (complete) lattice.

A sublattice of L is a non-empty subset M of L such that a, b ∈ M implies a∧ b,
a ∨ b ∈ M. If L and K are lattices, a mapping φ : L → K is a homomorphism of
lattices if φ(x ∧ y) = φ(x) ∧ φ(y) and φ(x ∨ y) = φ(x) ∨ φ(y) for all x, y ∈ L.
If moreover, φ is one -to-one and onto then φ is called an isomorphism of lattices.

Proposition 2.1 ([3]). If < E,≤,∧ > is a lower semilattice, then < E,∧ > is a
commutative semigroup of idempotents and for all a, b ∈ E, a ≤ b if and only if
a ∧ b = a. Conversely, if < E, · > is a commutative semigroup of idempotents, then
the relation ≤ defined by a ≤ b if and only if a·b = a turns E into a lower semilattice
in which a ∧ b = a · b for all a, b ∈ E.

In view of Proposition 2.1 a lower semilattice is precisely a commutative semigroup
of idempotents (commutative band) and usually referred to a semilattice (cf, [2]).

A lattice L =< L,≤,∧,∨ > is called modular if for all a, b, c ∈ L, a ≤ c implies
a ∨ (b ∧ c) = (a ∨ b) ∧ c. Since in any lattice we always have

a ≤ c implies a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c,

it follows that a lattice L is modular if and only if a ≤ c implies a∨(b∧c) ≥ (a∨b)∧c.

Proposition 2.2 ([3]). Let φ : S → Y be a homomorphism from a semigroup S
onto a semilattice Y. For each α ∈ Y let Sα = φ−1(α). Then

(i) Sα is a subsemigroup of S for all α ∈ Y,
(ii) S = ∪

α∈Y
Sα and this union is disjoint,

(iii) SαSβ ⊆ Sαβ for all α, β ∈ Y.

A semilattice of semigroups of type = is a semigroup S which is a disjoint union of
subsemigroups Sα, α ∈ Y of type = indexed by a semilattice Y such that SαSβ ⊆ Sαβ

for all α, β ∈ Y.

Definition 2.3 ([5]). Let Y be a semilattice and let {Sα : α ∈ Y } be a family of
monoids indexed by Y. For every α, β ∈ Y with α ≥ β, let φα,β : Sα → Sβ be a
homomorphism such that

(a) φα,α : Sα → Sα is the identical automorphism of Sα for all α ∈ Y,
(b) φβ,γ φα,β = φα,γ for all α, β, γ ∈ Y with α ≥ β ≥ γ.

Then S = ∪{Sα : α ∈ Y } is a strong semilattices of monoids.

Now we give examples of partial monoids.
146
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Example 2.4 ([6]). Recall that a partial mapping from a set X into a set Y, written
φ : X ½ Y, is a mapping φ from a (possibly empty) subset of X into Y, and therefore
determined by a subset B ⊆ X and a mapping φ : B → Y with domφ = B. The
set of all partial mappings from X into Y is denoted by P (X, Y ). This is actually a
disjoint union of sets of ordinary mappings

P (X,Y ) = ∪{M(B, Y ) : B ⊆ X}
where M(B, Y ) is the set of all mappings from B into Y. Now let X be a set and
let G be a monoid. Consider the set P (X,G) of all partial mappings α : X ½ G.
Thus, P (X, G) is a disjoint union of groups P (X, G) = ∪{M(B, G) : B ⊆ X} , where
M(B,G) is the group of ordinary mappings from B into G whose binary operation
is the multiplication of mappings (αB ◦ γB)x = (αBx)(γBx) for all x ∈ B. The
identity of the monoid M(B,G) is the (zero) mapping eB : B → G, x 7→ 1G. Define
E(P (X, G)) = {eB : B ⊆ X} . Then E(P (X, G)) is clearly a commutative semigroup
of idempotents with the operation ∆ defined as follows: eA∆eB = eA∩B for all
A,B ⊆ X. Equivalently, E(P (X,G)) is a semilattice with eA ≤ eB if and only if
A ⊆ B. For any two idempotents eA and eB with eA ≤ eB define a mapping
ϕB,A : M(B, G) → M(A,G) which sends each αB : B → G to its restriction
αA : A → G on A. Clearly, ϕB,A is a homomorphism of monoids, ϕB,B is the
identical automorphism of M(B,G) and eC ≥ eB ≥ eA implies ϕB,A ◦ϕC,B = ϕC,A.
It follows that < P (X,G), ∆ > is a partial monoid with the binary operation defined
for all αA ∈ M(A,G), and γB ∈ M(B,G) by

αA∆γB = (ϕA,A∩BαA)(ϕB,A∩BγB) = αA∩B .γA∩B

that is
αA∆γB : A ∩B → G, x 7→ αA(x).γB(x).

We denote < P (X, G),∆ > by
∆

P (X,G).

Example 2.5 ([6]). Suppose that {Se, Sf , Sg, ...} is a countable family of disjoint
isomorphic monoids indexed, without loss of generality, by the set E of their iden-
tities. Let S = ∪{Se : e ∈ E} . There exist two cases.

(a) E is countably infinite: In this case the set of all bijections N → E is countably
infinite and an element in this set may be viewed as a sequence or
a chain of E−elements. Let one of such countable sequences, say < e1, e2, ..., ei, ... > .
Thus E is turned into a countable chain e1 ≤ e2 ≤ ..., that is a commutative
semigroup of idempotents (i.e. semilattice) with operation ei · ej = ei if and only if
ei ≤ ej . By the assumption ( for ei ≤ ej) there exists a homomorphism

ϕej ,ei : Sej → Sei

which is also an isomorphism. These isomorphisms can be chosen in such a way that
φei,ei is the identical automorphism of Sei and ϕej ,ek

◦ ϕei,ej = ϕei,ek

for all ei, ej and ek with ei ≥ ej ≥ ek. Thus S = [E(S), Sei , ϕei,ej ] is a strong
semilattice of monoids There exist as many as countably infinite number of strong
semilattice of monoids constructed in this way.

(b) E is finite : This is a special case of (a) above. If say, the number of elements
in E is n, there exist exactly n! different chains of E-elements. Thus by the above
construction, S = ∪{Sei : i = 1, ..., n} is strong semilattice of monoids in n! ways.
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3. q-strong semilattices of monoids

Throughout this section, S stands for strong semilattices of monoids with identity
1. Thus S = [E(S); Sf , ϕf,g] with E(S) having upper bound 1. We call the identity
1 of S proper if the maximal subgroup S1 is not the trivial monoid , that is, if {1} is
a proper subset of S1.Otherwise 1 is called improper. In the usual partial ordering
of E(S) , we then have 1 ≥ e for all e ∈ E(S), and so we have a homomorphism of
monoids ϕ1,e : S1 → Se for every e ∈ E(S).

We call S a q-strong semilattices of monoids if ϕ1,e is an epimorphism for every
e ∈ E(S), this is equivalent to say that S1e = Se for every e ∈ E(S), that is, every
x ∈ Se can be written as a product ye for some y ∈ S1. Since S1e ⊂ Se always holds,
S is a q-strong semilattices of monoids iff Se ⊂ S1e for all e ∈ E(S).

If S is q-strong semilattices of monoids and e ≥ f in E(S), then we have
ϕe,f (Se) = Sef = (S1e)f = S1(ef) = S1f = Sf . It follows that in a q-strong
semilattices of monoids , every homomorphism ϕe,f is an epimorphism. We observe
also that in a q-strong semilattices of monoids S, Se · Sf = Sef ∀e, f ∈ E(S). For,
we have Se · Sf ⊂ Sef since S is a strong semilattice of its maximal monoids, and if
x ∈ Sef then x = yef for some y ∈ S1 which gives x = (ye)(1f) ∈ Se · Sf .

Let T be a wide subset of S , T is called a q-strong semilattices of monoids of
S if the restriction ϕ1,e on T1 is epimorphism for every e ∈ E(S) , that is, T is
a q-strong semilattices of monoids with the inherited operations from S. Trivially,
every semilattice with upper bound is a q-strong semilattices of monoids, and hence
E(S) is a q-strong semilattices of monoids of S . If the identity 1 of S is improper
we clearly have S = E(S) and so S reduces to a semilattice. The converse holds
trivially. Thus for any q-strong semilattices of monoids , we have S 6= E(S) if and
only if 1 is proper, that is, if and only if S1 is not the trivial monoid. We observe

that, the partial monoid
4
P (X, G) , for any set X and monoidp G, is a q-strong

semilattices of monoids That is for all B ⊂ X,ϕX,B : M(X,G) → M(B, G) is an

epimorphism of groups. For, we have
4
P (X, G) has the identity element 1X which is

the identity of the maximal monoid M(X, G) and given f ∈ M(B, G) , the mapping
−
f ∈ M(X,G) defined by

−
f (x) = f(x) if x ∈ B and

−
f (x) = 1G if x ∈ X −B satisfies

ϕX,B(
−
f ) = f. Thus ϕX,B is an epimorphism. Whence partial mappings (between

sets and monoids) may be considered as natural sources of q-strong semilattices of
monoids. Clearly M(X,G) is not the trivial monoid if and only if X is non empty

and G is not the trivial monoid. Thus
4
P (X, G) is a non trivial q-strong semilattices

of monoids if and only if X 6= ∅ and G 6= 0. We close this section by one more
simple observation.

Lemma 3.1. If S is a q-strong semilattices of monoids in which no two maximal
submonoids are isomorphic, then the kernals of the epimorphisms ϕ1,e, e ∈ E(S),
are all different.

Proof. Let Ne denote the kernal of ϕ1,e, e ∈ E(S). Thus Ne = {y ∈ S1 : ye = e} . If
e 6= f in E(S) and Ne = Nf , we have by the first isomorphism theorem of monoids

Se
∼= S1/Ne = S1/Nf

∼= Sf
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which contradicts the hypothesis. ¤

4. The Q-Operation

In the previous section we noticed that every strong semilatticess of monoids S
with identity contains a trivial q substrong semilattices of monoids, namely, E(S).
In this section, we show that nontrivial q substrong semilattices of monoids of S
exist whenever S1 is a non trivial monoid. More precisely, a maximal q substrong
semilattices of monoids of S always exists. This inherited to all wide substrong
semilattices of monoids T of S, and hence defines an operation T → Q(T ). In
later work, we will show that the Q-operation preserves normality, and commutes
with the operation of taking joins. In this section, we show that it commutes with
categorical products. Given a wide substrong semilattices of monoids T of S, the
existence of Q(T ) , the maximal q substrong semilattices of monoids contained in T
can be verified by the axiom of choice (e.g. Zorn’s lemma), but for later purpose we
construct Q(T ) explicitly. It is obtained, simply by taking images of ϕ1,e on T1 for
all e ∈ E(S). Formally, we have:

Lemma 4.1. Let S be a strong semilattices of monoids with identity and let T be a
wide substrong semilattices of monoids S. There exists a q substrong semilattices of
monoids Q(T ) of S which is unique maximal such that Q(T ) ⊂ T. Moreover Q(T )
is non trivial ( i.e. doesn’t equal E(S)) if and only if T1 is a non trivial monoid.

Proof. Since T is wide, it is a union of maximal monoids indexed by E(S), that
is, T = [E(S), Te, ϕe,f ] where Te is a submonoid of Se and ϕ1,e : T1 → Te is a
homomorphism (x 7→ xe) for every e ∈ E(S). Define

Q(T ) = ∪
e∈E(S)

Imϕ1,e = ∪
e∈E(S)

T1e.

Q(T ) is a disjoint union of monoids (Q(T ))e = T1e indexed by the semilattice E(S).
In particular, (Q(T ))1 = Imϕ1,1 = T1 and the restriction of ϕ1,e on T1 gives an
epimorphism ϕ1,e : (Q(T ))1 = T1 → (Q(T ))e for every e ∈ E(S). It follows that
Q(T ) is q-substrong semilattices of monoids of S contained in T . For e > f ,
ϕe,f : T1e → T1f is given by xe 7→ xf, (x ∈ T1). If K is q-substrong semilattices
of monoids of S with K ⊂ T, then K1 ⊂ T1 = (Q(T ))1 and for all e ∈ E(S) ,
Ke = K1e ⊂ T1e = (Q(T ))e. This proves the unique maximality of Q(T ).Finally,
Q(T ) 6= E(S) ⇒ (Q(T ))e 6= {e} for some e ∈ E(S) ⇒ T1e 6= {e} ⇒ T1 6= {1} ,
conversely, if T1 6= {1} , then (Q(T ))1 = T1 6= {1},
and so Q(T ) 6= E(S). ¤

Let us now consider strong semilattices of monoids as a part of universal algebra,
that is as a variety of algebras (defined by a set of identities). This implies that,
as a category, strong semilattices of monoids has all small limits and colimites (e.g.
products, coproducts, etc.). This is also true for strong semilatticess of monoids
with identities. In the rest of this section we consider categorical products of partial
monoidss (with identities) and show that the Q operation commutes with this prod-
uct which implies that product of any family of q-strong semilattices of monoids is
again a q-strong semilattices of monoids. We start by characterizing products in the
category of strong semilattices of monoids.
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Lemma 4.2. Let {Si, i ∈ I} be a family of strong semilattices of monoids and let
S = Π

i∈I
Si be the usual cartesian product. Then S is a strong semilattices of monoids

which is a categorical product with the usual projections πi : S → Si , (xi) 7→ xi. If
each Si has an identity 1si

, then (1si
) is the identity of S.

Proof. Define E(S) = Π
i∈I

E(Si). Then E(S) is a semilattice with (ei) ≤ (fi) if and

only if ei ≤ fi for all i ∈ I. We have

S = Π
i∈I

Si = Π
i∈I

∪(Si
ei∈E(Si)

)ei = ∪
(ei)∈E(S)

Π
i∈I

(Si)ei

Thus S is a disjoint union of monoids Π
i∈I

(Si)ei
, ei ∈ E(Si) with identities (ei)i∈I , ei ∈

E(Si) , indexed by the semilattice E(S). For (ei) ≥ (fi) in E(S) , there is a homo-
morphism

ϕ(ei),(fi) : Π
i∈I

(Si)ei
→ Π

i∈I
(Si)fi

,

given by
(xi) 7→ (ϕei,fi

xi).
Now we can easily verify that S is a categorical product, and that S has identity if
each Si has a one. ¤

Theorem 4.3. Let {Si, i ∈ I} be a family of strong semilattices of monoids, with
identities . Then Q( Π

i∈I
Si) = Π

i∈I
Q(Si).

Proof. By Lemma 4.2, Π
i∈I

Si is a strong semilattices of monoids with identity (1si)i∈I

which is a union of maximal submonoids ( Π
i∈I

Si)(ei) indexed by the semilattice

E(S) = Π
i∈I

E(Si). By Lemma 4.1, we have

Q( Π
i∈I

Si) = ∪
(ei)∈E(S)

( Π
i∈I

Si)(1si
)(ei)

= ∪
(ei)∈E(S)

( Π
i∈I

(Si)1si
ei) = Π(

i∈I

∪
ei∈E(Si)

(Si)1si
ei)

= ∪
(ei)∈E(S)

( Π
i∈I

(Si)1si
ei) = Π

i∈I
Q(Si).

¤

By the definition of the Q operation , one can show that the product of any family
of q-strong semilattices of monoids is again a q-strong semilattices of monoids. But
if we notice that for any strong semilattices of monoids S with identity , S is a
q-strong semilattices of monoids if and only if Q(S) = S , then the following is an
easy consequence of Theorem 4.3.

Corollary 4.4. If {Si, i ∈ I} is a family of q strong semilattices of monoids, then
the product Π

i∈I
Si is a q-strong semilattices of monoids.
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